

Thiolato-Bridged Ru^{II}Ag^IRu^{II} Trinuclear Complex Composed of Bis(bipyridine)ruthenium(II) Units with Chelating 2-Aminoethanethiolate: Conversion to a Disulfide-Bridged Ru^{II}Ru^{II} Dinuclear Complex

Motoshi Tamura, Noriyuki Matsuura, Tatsuya Kawamoto, and Takumi Konno*

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Received March 26, 2007

The reaction of $[Ru(solvent)_2(bpy)_2]^{2+}$ (bpy = 2,2'-bipyridine) with Haet (2-aminoethanethiol) in ethanol/water in the presence of Ag⁺ gave a thiolato-bridged Ru^{II}Ag^IRu^{II} trinuclear complex, $[Ag{Ru-(aet)(bpy)_2}_2]^{3+}$, in which two $[Ru^{II}(aet)(bpy)_2]^+$ units are linked by an Ag^I atom. When this complex was treated with HCI in acetonitrile/water, a disulfide-bridged Ru^{II}Ru^{II} dinuclear complex, $[Ru_2(cysta)(bpy)_4]^{4+}$ (cysta = cystamine), was produced as a result of the removal of an Ag^I atom and the autoxidation of thiolato groups. It was found that the dinuclear structure in $[Ru_2(cysta)-(bpy)_4]^{4+}$ is reverted back to $[Ag{Ru(aet)(bpy)_2}_2]^{3+}$ by treatment with Ag⁺ assisted by Zn reduction.

Over the past decades, a number of octahedral bis-(bipyridine)ruthenium(II) complexes have been prepared to investigate fundamental spectroscopic, electrochemical, and photochemical properties of Ru^{II} species with diimine-type ligands.¹ In many cases, the remaining two coordination sites of bis(bipyridine)ruthenium(II) complexes are occupied by N and/or O donors, while those with an S donor are less common. In particular, examples of bis(bipyridine)ruthenium(II) complexes containing a thiolate ligand are limited in number,² presumably because of the strong electrondonating ability of a thiolato donor that tends to stabilize a higher oxidation state of a Ru center. 2-Aminoethanethiolate (aet = $^{-}SCH_2CH_2NH_2$) is the simplest aliphatic aminothiolate ligand that is expected to chelate to a Ru center via N and S donors.³ However, no bis(diimine)-type ruthenium(II) complexes with a chelating aet ligand have appeared to date. Our previous attempts to prepare $[Ru(aet)(bpy)_2]^+$ from [Ru- $(solvent)_2(bpy)_2]^{2+}$ and Haet resulted in the formation of a Ru^{II}_{2} complex, $[{Ru(bpy)_{2}}_{2}(\mu-Haet-S)_{2}]^{4+}$, in which two $[Ru(bpy)_2]^{2+}$ moieties are bridged by two S atoms from two ⁻SCH₂CH₂NH₃⁺ ligands.⁴ In our continuing efforts to investigate the binding behavior of aet toward a Ru center, we found that a thiolato-bridged RuIIAgIRuII trinuclear complex composed of two $[Ru(aet)(bpy)_2]^+$ units is produced by the reaction of $[Ru(solvent)_2(bpy)_2]^{2+}$ with Haet in the presence of Ag⁺ (Scheme 1). This complex is the first example of N,S-chelation of an aliphatic aminothiolate ligand to a bis(diimine)-type ruthenium(II) core, although several bis(diimine)-type ruthenium(II) complexes with an aromatic iminothiolate ligand with an N,S-donor set have been presented.^{2,5,6} Notably, this thiolato-bridged Ru^{II}Ag^IRu^{II} complex was found to be converted into a rare singledisulfide-bridged Ru^{II}Ru^{II} dinuclear complex.⁷ In this Communication, we report on the syntheses and properties of these Ru^{II} complexes, along with their structural characterization.

Treatment of a red-orange solution containing [Ru-(solvent)₂(bpy)₂]²⁺ and Ag^+ in a 1:1 ratio, which was in situ

- (3) Matsuura, N.; Igashira-Kamiyama, A.; Kawamoto, T.; Konno, T. Inorg. Chem. 2006, 45, 401.
- (4) (a) Matsuura, N.; Igashira-Kamiyama, A.; Kawamoto, T.; Konno, T. *Chem. Lett.* **2005**, *34*, 1252. (b) Matsuura, N.; Kawamoto, T.; Konno, T. *Bull. Chem. Soc. Jpn.* **2006**, *79*, 297.
- (5) (a) Scopelliti, R.; Bruno, G.; Donato, C.; Tresoldi, G. *Inorg. Chim. Acta* 2001, *313*, 43. (b) Pal, P. K.; Drew, M. G. B.; Datta, D. *New J. Chem.* 2003, *27*, 197.
- (6) An organometallic compound with a thiolato-bridged Ru^{II}Ag^IRu^{II} linkage has been reported. Shin, R. Y. C.; Tan, G. K.; Koh, L. L.; Vittal, J. J.; Goh, L. Y. *Organometallics* **2005**, *24*, 539.
- (7) (a) Matsumoto, K.; Moriya, Y.; Sugiyama, H.; Hossain, M. M.; Lin, Y.-S. J. Am. Chem. Soc. 2002, 124, 13106. (b) Shin, R. Y. C.; Teo, M. E. T.; Leong, W. K.; Vittal, J. J.; Yip, J. H. K.; Goh, L. Y. Organometallics 2005, 24, 1483. (c) Sasaki, S.; Hossain, M. M.; Sugiyama, H.; Ishizu, S.; Matsumoto, K. Inorg. Chim. Acta 2006, 359, 3625.

^{*} To whom correspondence should be addressed. E-mail: konno@ch. wani.osaka-u.ac.jp.

 ⁽a) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; Zelewsky, A. V. Coord. Chem. Rev. 1988, 84, 85. (b) Meyer, T. J. Acc. Chem. Res. 1989, 22, 163. (c) Harriman, A.; Ziessel, R. Coord. Chem. Rev. 1998, 171, 331. (d) Keefe, M. H.; Benkstein, K. D.; Hupp, J. T. Coord. Chem. Rev. 2000, 205, 201. (e) Shan, B.-Z.; Zhao, Q.; Goswami, N.; Eichhorn, D. M.; Rillema, D. P. Coord. Chem. Rev. 2001, 211, 117. (f) Martínez-Máñez, R.; Sancenón, F. Chem. Rev. 2003, 103, 4419. (g) D'Alessandro, D. M.; Keene, F. R. Chem. Phys. 2006, 324, 8.

^{(2) (}a) Cargill Thompson, A. M. W.; Bardwell, D. A.; Jeffery, J. C.; Rees, L. H.; Ward, M. D. J. Chem. Soc., Dalton Trans. **1997**, 721. (b) Santra, B. K.; Menon, M.; Pal, C. K.; Lahiri, G. K. J. Chem. Soc., Dalton Trans. **1997**, 1387. (c) Ebadi, M.; Lever, A. B. P. Inorg. Chem. **1999**, 38, 467. (d) Bhattacharyya, D.; Chakraborty, S.; Munshi, P.; Lahiri, G. K. Polyhedron **1999**, 18, 2951.

prepared from [RuCl₂(bpy)₂]⁸ and 3 equiv of AgClO₄ in ethanol/water (1:1), with excess Haet under reflux gave a red-brown solution, from which a dark-red-brown powder (1) was isolated by the addition of aqueous NH_4PF_6 .⁹ The electronic absorption spectrum of 1 in acetonitrile is characterized by an intense (metal-to-ligand charge-transfer) MLCT band at 501 nm with a shoulder at the shorter wavelength side, besides a more intense band at 293 nm assignable to a bpy $\pi - \pi^*$ transition (Figure 1).^{5,10} X-ray fluorescence spectrometry suggested that 1 contains Ru and Ag atoms in a 2:1 ratio, and its elemental analytical data were in agreement with the formula for a 2:1 adduct of [Ru- $(aet)(bpy)_2$ ⁺ and Ag⁺. The crystal structure of **1**, which is composed of a complex cation and three PF₆⁻ anions, was established by single-crystal X-ray analysis.9 As shown in Figure 2, the complex cation of 1 consists of two approximately octahedral [Ru(aet)(bpy)₂]⁺ units with an N,Schelating aet ligand and an AgI atom. The two thiolato S atoms from two [Ru(aet)(bpy)₂]⁺ units coordinate to the Ag^I atom in a roughly linear geometry $[S-Ag-S = 164.30(4)^{\circ}]$ to form an S-bridged Ru^{II}Ag^IRu^{II} trinuclear structure in [Ag- ${Ru(aet)(bpy)_2}_2^{3+}$. The Ru-S bond distances in 1 [av 2.376(2) Å] are slightly shorter than those in $[Ru_2(\mu-Haet)_2 (bpy)_4^{4+}$ with a Ru₂S₂ diamond core [av 2.417(1) Å for the meso isomer and 2.405(2) Å for the racemic isomer].⁴ The Ag-S bond distances [av Ag-S = 2.373(2) Å] are ca. 0.03 Å shorter than those found in the related linear-type $Co^{III}Ag^{I}Co^{III}$ trinuclear complexes, $[Ag\{Co(aet)(en)_2\}_2]^{5+}$ [av 2.400(1) Å] and $\Lambda_L \Lambda_L$ -[Ag{Co(L-cysteinato-N,S)(en)₂}₂]³⁺ [av 2.393(1) Å],¹¹ indicating the stronger binding nature of the thiolato group in each $[Ru(aet)(bpy)_2]^+$ unit toward an Ag^I center. Considering the chiral configurations of the two $[Ru(aet)(bpy)_2]^+$ units (Δ and Λ) and the two bridging S atoms (R and S), 10 isomers are possible for [Ag{Ru(aet)- $(bpy)_{2}_{2}^{3+}$. Crystal 1 consists of the $\Delta R - \Delta R$ and $\Delta S - \Delta S$ isomers, which combine to form a racemic compound. The same stereochemical behavior has been found in [Ag{Co- $(aet)(en)_2\}_2]^{5+}$.

Attempts to remove Ag^{I} from 1 by treatment with excess NaCl were unsuccessful. On the other hand, treatment of 1 with 1 M HCl in acetonitrile/water (1:1) resulted in the precipitation of AgCl and the isolation of a brown powder (2).⁹ The absorption spectral feature of 2 is distinct from

- (8) Sullivan, B. P.; Salmon, D. J.; Meyer, T. J. Inorg. Chem. 1978, 17, 3334.
- (9) See the Supporting Information.
- (10) (a) Ceulemans, A.; Vanquickenborne, L. G. J. Am. Chem. Soc. 1981, 103, 2238. (b) Yamaguchi, M.; Machiguchi, K.; Mori, T.; Kikuchi, K.; Ikemoto, I.; Yamagishi, T. Inorg. Chem. 1996, 35, 143.

Figure 1. Electronic absorption spectra of **1** (-) and **2** (- - -) in acetonitrile.

Figure 2. Perspective view of the complex cation of **1** with the atomic labeling scheme. H atoms are omitted for clarity.

Figure 3. Perspective view of the complex cation of 2 with the atomic labeling scheme. H atoms are omitted for clarity.

that of **1** in the visible region, showing an intense MLCT at 434 nm (Figure 1). The absence of an Ag atom in 2 was confirmed by X-ray fluorescence spectrometry, and its elemental analytical result was in good agreement with a formula for $[Ru(aet)(bpy)_2](PF_6)_2$, rather than that for [Ru- $(aet)(bpy)_2](PF_6)$. X-ray analysis revealed that the complex cation of 2 does not have an expected mononuclear structure but a dinuclear structure bearing a cystamine (cysta) ligand that bridges two Ru centers through a bis(bidentate-N,S) binding mode (Figure 3).9 A crystallographic inversion center is located at the midpoint of a S-S bond, and thus half the complex cation is crystallographically independent. The presence of four PF₆⁻ anions per one complex cation in the unit cell implies that the entire complex cation of 2 is tetravalent. Thus, the complex cation of 2 is formulated as [Ru₂(cysta)(bpy)₄]⁴⁺, having two Ru centers with a formal charge of 2+. The S-S bond distance in 2 is 2.163(3) Å, which is comparable with the S-S distance in the related dinuclear structure in $[M_2(aet)_4(cysta)]^{2+}$ [2.158(3) Å for M = Ir^{III} and 2.147(1) Å for M = Rh^{III}].¹¹ It is interesting to note that the Ru-S distance in 2 with a neutral cysta ligand [2.291(2) Å] is appreciably shorter than those in 1 with anionic aet ligands [av 2.376(2) Å], while the Ru-N_{aet} [av 2.139(3) Å in 1 and 2.133(5) Å in 2] and Ru–N_{bpy} distances [av 2.056(4) Å in 1 and 2.068(6) Å in 2] are similar. This

COMMUNICATION

implies that a Ru^{II} center coordinated by two bpy ligands prefers a disulfide S donor to a thiolato S donor. In **2**, the two octahedral Ru^{II} units have Δ and Λ configurations with *R* and *S* configurational disulfide S atoms to form a meso compound. The selective formation of the $\Delta R - \Lambda S$ meso isomer has also been found in [M₂(aet)₄(cysta)]²⁺.

The ¹H NMR spectrum of **1** in acetonitrile- d_3 at room temperature exhibits a single set of sharp signals corresponding to a $[Ru(aet)(bpy)_2]^+$ unit.^{9,13} This is also the case for its ¹³C NMR spectrum, which gives two methylene C signals (δ 29.88 and 49.15) for two aet ligands and 19 aromatic C signals (δ 123.90–159.39) for four bpy ligands in the complex.⁹ When the temperature is lowered, broadening of the ¹H NMR spectral signals was recognized for 1.⁹ The NMR spectral behavior suggests the existence of two or more isomers of $[Ag{Ru(aet)(bpy)_2}_2]^{3+}$ in solution,¹⁴ which are rapidly interconverted not to be discriminated by NMR spectroscopy, rather than the existence of a single racemic isomer found in the crystal. On the other hand, the ¹H NMR spectrum of 2 in acetonitrile- d_3 at room temperature shows considerably broad signals over the whole region.^{15,16} However, lowering the temperature leads to a sharpening of the signals. A closer inspection of the variable-temperature ¹H NMR spectra suggested that in solution 2 exists as a mixture of asymmetrical and symmetrical isomers of [Ru2- $(cysta)(bpy)_4]^{4+,9,14}$ which are interconverted with each other on the NMR time scale. The ¹³C NMR spectrum of 2 in acetonitrile- d_3 at -30 °C is consistent with the existence of the two isomers in solution, giving six methylene C signals $(\delta 40.77-44.33)$ in addition to aromatic C signals (δ 124.66-158.80).⁹ The cyclic voltamogram of **2** in acetonitrile under N_2 displays two reductions at -0.40 and -0.53 V and an oxidation at -0.31 V (vs Ag/Ag⁺), besides two bpycentered redox couples at -1.90 and -2.19 V (Figure 4).⁹ It is most likely that the two reductions are due to the $[Ru^{II}_{2}]$ - $(cysta)(bpy)_4]^{4+/2}[Ru^{II}(aet)(bpy)_2]^+$ conversion for the two isomers, which is coupled with the oxidation at -0.31 V. Spectroelectrochemical experiments for 2 were carried out using an optically transparent thin-layer electrode (OTTLE) cell under N₂. When the potential is decreased from 0 to -0.70 V, the absorption spectrum of 2 gradually changes

Figure 4. Sequential absorption spectra obtained during an OTTLE spectropotentiostatic experiment on 2 (0.5 mM) in $CH_3CN/[Bu_4N]PF_6$ (0.1 M) at (a) 0, (b) -300, (c) -350, (d) -375, (e) -400, and (f) -700 mV (vs Ag/Ag⁺).

with the isosbestic points at 482, 387, and 332 nm (Figure 4). The absorption spectrum recorded at -0.70 V shows a visible band at 538 nm with a shoulder at the shorter wavelength side. This spectral feature resembles that of 1, which is compatible with the generation of $[Ru^{II}(aet)(bpy)_2]^+$ by the electrochemical reduction of 2. Here, it should be noted that 2 was not reverted back to 1 by treatment only with Ag⁺ in acetonitrile/water (1:1). However, the addition of Zn powder, which acts as a reducing agent, to a mixture of 2 and Ag⁺ led to the isolation of 1.⁹

In summary, we showed that the thiolato-bridged Ru^{II}-Ag^IRu^{II} complex composed of two [Ru(aet)(bpy)₂]⁺ units, $[Ag{Ru(aet)(bpy)_2}_2]^{3+}$ ([1]³⁺), is successfully prepared from the reaction of $[Ru(solvent)_2(bpy)_2]^{2+}$ with Haet in the presence of Ag⁺. Interestingly, the removal of the linking Ag^{I} atom in $[1]^{3+}$ by treatment with HCl is accompanied by the autoxidation of coordinated thiolate to coordinated disulfide, producing the disulfide-bridged Ru^{II}Ru^{II} complex, $[Ru_2(cysta)(bpy)_4]^{4+}$ ([2]⁴⁺). This result implies that the mononuclear $[Ru^{II}(aet)(bpy)_2]^+$ is difficult to isolate under aerobic conditions, which is understood by the fairly negative reduction potentials of 2. The strong σ - and π -donating character of an aliphatic thiolato group, together with the lack of π -accepting character of an amine group, is responsible for this result. The reverse conversion of $[2]^{4+}$ into $[1]^{3+}$ was also achieved by treatment with Ag⁺ assisted by Zn reduction. Thus, the present result showed the unique interconversion between the [RuII(RS⁻)] and [RuII(RSSR)-Ru^{II}] species with retention of the octahedral [Ru(bidentate-N,S)(bpy)₂] unit.

Acknowledgment. This work was partially supported by Grants-in-Aid for Scientific Research on Priority Areas (18033030) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supporting Information Available: Crystallographic data in CIF format and experimental procedures, crystallographic data, and several spectra in PDF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC700572R

 ^{(12) (}a) Konno, T.; Miyashita, Y.; Okamoto, K. *Chem. Lett.* **1997**, 85. (b) Miyashita, Y.; Sakagami, N.; Yamada, Y.; Konno, T.; Okamoto, K. *Bull. Chem. Soc. Jpn.* **1998**, *71*, 2153.

^{(13) (}a) The electrospray mass spectrometry (ES-MS) spectrum of 1 in acetonitrile showed a cluster of signals centered at *m*/*z* = 363.0 corresponding to [Ag{Ru(aet)(bpy)_2}_2]^{3+}, besides those at *m*/*z* = 521.9, 490.0, 337.7, and 320.1 corresponding to [Ru(NH₂CH₂CH₂SO₂)-(bpy)₂]⁺, [Ru(aet)(bpy)₂]⁺, [Ag{Ru(aet)(bpy)₂}{Ru(aet)(CH₃CN)₂-(bpy)}]^{3+}, and [{Ru(aet)(bpy)_2}Ag(CH₃CN)]^{2+}, respectively. See the Supporting Information.

⁽¹⁴⁾ The electronic spectrum of each of 1 and 2 in acetonitrile is essentially the same as that in the solid state, which suggests the retention of the thiolato-bridged Ru^{II}Ag^IRu^{II} and the disulfide-bridged Ru^{II}Ru^{II} structures in solution. See the Supporting Information.

⁽¹⁵⁾ The magnetic measurement at room temperature indicated that the solid sample of 2 is diamagnetic, consistent with the low-spin d⁶ electronic configuration of Ru^{II} centers. The diamagnetic nature of 2 in the solid state and in acetonitrile is also supported by the EPR spectra that are essentially silent.

⁽¹⁶⁾ The ES-MS spectrum of 2 in acetonitrile gave a main signal at m/z = 635.0, the calculated molecular mass and the isotopic distribution of which match well with those for a mixture of {[Ru^{III}(aet)(bpy)₂](PF₆)}⁺ and {[Ru^{II}₂(cysta)(bpy)₄](PF₆)₂)²⁺. See the Supporting Information.